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Abstract
We propose nonlinear integral equations for the finite volume one-particle
energies in the O(3) and O(4) nonlinear σ -models. The equations are
written in terms of a finite number of components and are therefore easier
to solve numerically than the infinite component excited-state TBA equations
proposed earlier. Results of numerical calculations based on the nonlinear
integral equations and the excited-state TBA equations agree within numerical
precision.

PACS numbers: 05.70.Ce, 03.70.+k, 11.55.−m

1. Introduction

A better theoretical understanding of finite size (FS) effects is one of the most important
problems in quantum field theory (QFT). The study of FS effects is a useful method of analysing
the structure of QFT models and it is an indispensable tool in the numerical simulation of
lattice field theories.

Finite size effects can be studied through the volume dependence of the mass gap of
the theory, the usefulness of which is demonstrated [1] by the introduction of the Lüscher–
Weisz–Wolff (LWW) running coupling that enables interpolation between the large volume
(non-perturbative) and the small volume (perturbative) regions in both two-dimensional sigma
models and QCD.

The study of the Lüscher–Weisz–Wolff running coupling is useful in the two-dimensional
O(N) nonlinear sigma (NLS) models, because according to recently performed high-precision
Monte Carlo measurements of the LWW running coupling [2] the cut-off effects look linear in
these models, in contrast to perturbative considerations. The knowledge of the exact value of
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the LWW coupling enables one to make better fits for the cut-off effects, and thus to determine
more accurately the functional form of the lattice artefacts.

Our aim in this paper is to propose nonlinear integral equations (NLIEs) for the one-
particle states of the O(3) and O(4) NLS models that allow for a fast and accurate numerical
calculation of the LWW coupling. Although this calculation has recently been done in [3]
using the excited-state thermodynamic Bethe ansatz (TBA) technique [4–9], the difficulties
corresponding to the infinite number of components in the TBA equations make the numerical
calculations slow and at the same time restrict their accuracy too. Therefore, it is desirable to
work with the more convenient NLIE technique.

Another point of the construction of these excited-state NLIEs is to demonstrate that,
similarly to the case of the sine-Gordon model [10, 11], the NLIE technique can be extended
to describe the finite size excited states also in the family of NLS models.

The infinite sets of TBA equations for the ground states of the O(3) and O(4) NLS models
were given in [12, 13] and [14, 15], respectively. The derivation of the equations was based
on the fact that NLS models can be represented as (limits of) certain perturbed conformal field
theories [12–15].

The TBA description of the excited states is less systematic in the continuum models
than it is for the ground-state problem. Although a lot of different methods have been worked
out to obtain excited-state TBA equations in different models [4–9], a general construction
has not been discovered yet. The generalization of the TBA equations of the O(3) and
O(4) NLS models to one-particle excited states was proposed recently [3]. The sigma-model
TBA equations consist of infinitely many components, which makes their numerical analysis
difficult.

The NLIEs for the ground state of the O(3) NLS model were proposed in [16], based on
the statement according to which the O(3) NLS model can be expressed as a certain limit of
appropriately perturbed ZN parafermion conformal field theories [12].

The ground-state NLIEs for the O(4) NLS model were derived in [17], using the integrable
lattice regularization of the model [20–22].

Our main purpose in this paper is to propose excited-state NLIEs for the one-particle
states of the O(3) and O(4) NLS models. This is achieved in sections 4 and 5 using the
assumption that the excited-state NLIEs differ from the ground state ones only in additional
source terms, and if it is necessary in additional quantization conditions.

The paper is organized as follows. In section 2, we recall the TBA integral equations,
Y-systems and NLIEs corresponding to the ground-state problem. In section 3, we briefly
summarize the one-particle TBA equations of the models. In sections 4 and 5, we propose
excited-state NLIEs for the O(4) and O(3) NLS models, respectively. Numerical solutions
of the NLIEs and their comparison to perturbation theory and to TBA results are discussed in
section 6. Finally, our conclusions are summarized in section 7.

2. The ground-state problem of the O(4) and O(3) NLS models (TBA and NLIE)

In this section, we give a short review of the ground-state TBA equations, Y-systems and
nonlinear integral equations (NLIEs) for the O(4) and O(3) NLS models.

The ground-state energy of a two-dimensional integrable model enclosed in a finite box
with periodic boundary conditions can be determined by the solutions of the TBA integral
equations [18]. The TBA equations of the O(4) and O(3) NLS models can be encoded in
infinite Dynkin diagrams (see figures 1(a) and (b)).

The unknown functions ya are associated with nodes of the Dynkin diagram and the TBA
equations are of the form [12–15]
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Figure 1. Dynkin diagrams associated with the Y-systems of the (a) O(4) and (b) O(3) σ -models.

ya(x) = exp

{
δa1D(x) +

∞∑
b=1

Iab(K ∗ log Yb)(x)

}
, a = 1, 2, . . . (1)

where

Ya(x) = 1 + ya(x), K(x) = 1

4 cosh π
2 x

, D(x) = −ml cosh
(π

2
x
)

, (2)

the ∗ denotes the convolution, i.e. (f ∗ g)(x) = ∫ ∞
−∞ dy f (x − y)g(y),m is the mass gap

in infinite volume, l is the box size and Iab is the incidence matrix of the Dynkin diagram.
The TBA equations of the O(4) NLS model correspond to the diagram shown in figure 1(a)
[14, 15], where the oriented double line at the beginning of the diagram means

I12 = 2, I21 = 1. (3)

The TBA equations of the O(3) NLS model are encoded into a D∞ diagram shown in
figure 1(b). The ground-state energy can be calculated from the solutions of the TBA equations
[12–15]

E0(l) = −m

4

∫ ∞

−∞
dx cosh

(πx

2

)
log Y1(x). (4)

The solutions of the TBA equations also satisfy the so-called Y-system equations [19]

ya(x + i)ya(x − i) =
∏
b

Yb(x)Iab . (5)

There is another alternative to calculate the ground-state energy of the O(4) NLS model,
namely the nonlinear integral equation technique. The nonlinear integral equations for the
ground state of the O(4) NLS were derived in [17] using the light-cone lattice approach of the
model of [20]. The nonlinear integral equations in this case are of the form

log y1(x) = D(x) + 2(K+γ ∗ log U)(x) + 2(K−γ ∗ log Ū )(x),

log a(x) = (F ∗ log U)(x) − (F +2(1−γ ) ∗ log Ū )(x) + (K−γ ∗ log Y1)(x),

log ā(x) = (F ∗ log Ū )(x) − (F−2(1−γ ) ∗ log U)(x) + (K+γ ∗ log Y1)(x),

U(x) = 1 + a(x), Ū(x) = 1 + ā(x), Y1(x) = 1 + y1(x),

(6)

where 0 < γ < 1/2 is an arbitrary fixed parameter,

F(x) =
∫ ∞

−∞

dq

2π

e−|q|−iqx

2 cosh(q)
, (7)

and we have used the notation

f ±η(x) = f (x ± iη). (8)

In this case, the form of the ground-state energy is the same as it is in the TBA case (4).
Equations (6) contain only three real unknown functions because y1(x) and Y1(x) are real and
ā(x) is the complex conjugate of a(x), therefore they serve as an efficient basis for numerical
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Figure 2. Graphical representation for the NLIEs of the (a) O(4) and (b) O(3) σ -models.

calculations. The graphical notation of these equations is depicted in figure 2(a). The big
‘bubble’ denotes the complex auxiliary functions which sum up the contributions of those
TBA nodes, which are inside it. In our notation, the names of the complex unknown functions
and the kernel function are indicated.

In [17], equations (6) were derived on a Bethe ansatz solvable lattice and certainly the
TBA equations of the model can also be derived from the Bethe ansatz solution of the model.
Thus, it turns out that the function y1(x) of equations (6) is exactly the same as the function
y1(x) of the TBA equations (1). Furthermore, the connection between the complex a(x) and
ā(x) variables and the TBA variables can be expressed by the following formula:

U(x + iγ )Ū(x − iγ ) = Y2(x), (9)

which is a very important formula from the NLIE technique point of view, because this relation
allows one to reduce the infinite component TBA system to a finite component NLIE.

NLIEs are also available for the ground state of the O(3) NLS model. In [16], NLIEs
were proposed for a class of perturbed parafermion conformal field theories, which reduce to
the O(3) NLS model in a certain limit [12]. Taking the appropriate limit, the NLIEs take the
form
log y1(x) = D(x) + log y2(x),

log y2(x) = (K+γ ∗ log U)(x) + (K−γ ∗ log Ū )(x),

log a(x) = (F ∗ log U)(x) − (F +2(1−γ ) ∗ log Ū )(x)

+ (K−γ ∗ log Y1)(x) + (K−γ ∗ log Y2)(x),

log ā(x) = (F ∗ log Ū )(x) − (F−2(1−γ ) ∗ log U)(x)

+ (K+γ ∗ log Y1)(x) + (K+γ ∗ log Y2)(x),

U(x) = 1 + a(x), Ū(x) = 1 + ā(x), Ya(x) = 1 + ya(x), a = 1, 2

(10)

where 0 < γ < 1/2 is an arbitrary fixed parameter, the kernel and source functions are the
same as in (2), (7) and the ground-state energy is given by formula (4) as in the TBA case.
The graphical representation of these equations is given in figure 2(b).

Although these equations are only conjectured ones, one can recognize that the functions
y1(x) and y2(x) are the same as those of the corresponding TBA equations (1), a(x) and ā(x)

are the complex conjugates of each other and the connection between the TBA and NLIE
variables can be expressed (similarly to the O(4) case) by the formula

U(x + iγ )Ū(x − iγ ) = Y3(x), (11)

which somehow ensures the reduction of the infinite component Y-system.

3. TBA equations for the one-particle states of the O(4) and O(3) NLS models

In this section, we briefly review the first excited-state TBA equations of the O(4) and O(3)

NLS models proposed in [3].
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In [3], the main assumption was (based on previous experience with the sine-Gordon case)
that the Y-system (5) describes not only the ground state of the model, but remains valid also
for the first excited state. Then Lüscher’s mass gap formula [23], valid for asymptotically large
volumes, was used to determine the infinite volume solution of the excited-state Y-system,
which is sufficient to derive the one-particle excited-state TBA equations. It is important from
the NLIE technique point of view that the infinite volume solutions of the Y-system can be
expressed by an infinite volume t-system, which is of the form

tp(x + i)tp(x − i) = B(x − ip)B(x + ip) + tp−1(x)tp+1(x), p = 1, 2, . . . (12)

where

t0(x) = 0, (13)

B(x) = x, in the O(4) case (14)

and

B(x) = x2 + 1, in the O(3) case. (15)

The solution of (12) can be represented in the following form:

tp(x) =
p∑

l=1

λ
(p)

l (x), λ
(p)

l (x) = B[x + i(2l − p − 1)]. (16)

Using the infinite volume t-system (12), the infinite volume solutions of the Y-system can be
given as

y∞
p (x) = tp−1(x)tp+1(x)

B(x − ip)B(x + ip)
,

Y∞
p (x) = tp(x − i)tp(x + i)

B
(x − p)B(x + ip), p = 1, 2, . . .

(17)

The infinite volume Y-systems of the O(3) and O(4) NLS models [3] are of the form

y∞
p (x + i)y∞

p (x − i) = Y∞
p−1(x)Y∞

p+1(x) p = 2, 3, . . . (18)

where y∞
1 (x) = 0, because the Y-system element corresponding to the massive node of the

Dynkin diagram tends to zero in the infinite volume limit. The usefulness of these infinite
volume solutions is that they give the qualitative position of the zeros of the ya(x) functions
of the Y-system, which is sufficient [3, 24] for the derivation of excited-state TBA integral
equations. Thus, the one-particle TBA equations of the O(4) NLS model are of the form [3]

ya(x) = τ 2(x) exp

{
δa1D(x) +

∞∑
b=1

Iab(K ∗ log Yb)(x)

}
, a = 1, 2, . . . (19)

where

τ(x) = tanh
(πx

4

)
, (20)

and Iab is the incidence matrix of figure 1(a). The energy of this state takes the form

E1(l) = m − m

4

∫ ∞

−∞
dx cosh

(πx

2

)
log Y1(x). (21)
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Similarly the one-particle TBA equations of the O(3) NLS model can be read off from
[3] and take the form

y1(x) = eD(x)y2(x),

y2(x) = τ(x − h3)τ (x + h3) exp{(K ∗ log Y3)(x)}

ya(x) = τ(x − ha−1)τ (x + ha−1)τ (x − ha+1)τ (x + ha+1)exp

({ ∞∑
b=1

Iab(K ∗ log Yb)(x)

})

a = 3, 4, . . .

(22)

and in addition to these integral equations one has to impose quantization conditions for the
ha zeros of the ya(x) functions to ensure that ya(±ha ± i) = −1, which is a consequence
of the (5) Y-system relations. These quantization equations can be obtained by the analytic
continuation of (22) and are of the form

γ (hs − hs−1) + γ (hs + hs−1) + γ (hs − hs+1) + γ (hs + hs+1)

− 1

i

∞∑
b=1

Isb(K
−1 ∗ log Yb)(x) = π, (23)

for s = 3, 4, . . . , where h2 = 0, γ (x) = 2 arctan τ(x) and

(K−1 ∗ log Yb)(x) = iP
∫ ∞

−∞

dy

4

log Yb(y)

sinh π
2 (x − y)

(24)

is a principal value integration.
Our main goal in this paper is to propose NLIEs equivalent to these infinite component

excited-state TBA equations.

4. Nonlinear integral equations for the first excited state of the O(4) NLS model

In this section, we propose nonlinear integral equations for the first excited state of the O(4)

NLS model. The proposal is based on the assumption that the excited-state NLIEs differ from
the ground state ones only in additional source terms, plus if it is necessary in quantization
conditions. In addition, we assume that the functional form of these additional source terms
does not depend directly on the volume. They can depend on the volume only through some
complex objects, on which we impose quantization conditions. Such objects may be the zeros
of the Y-system elements, or some roots of the Bethe ansatz equations as happens in the
sine-Gordon case [11]. These assumptions are valid for the NLIEs in the sine-Gordon model,
where the form of the excited-state NLIEs of [11] differ from the ground-state NLIE of [10]
only in additional source terms and in quantization conditions.

In this model, one can even give a physical interpretation of the various terms of the
equation. The integral term represents the contribution of the infinite number of real Bethe
ansatz roots. The presence of these roots can be regarded as filling the Dirac sea and thus
the presence of this term in the NLIE of the sine-Gordon model is somehow related to the
vacuum structure of the theory. For an excited state of the model one has to consider a slightly
modified configuration of the Bethe ansatz roots. It turns out that in the sine-Gordon model,
these modifications can be taken into account by adding source terms to the NLIE of the
ground-state problem [11]. Similarly, the excited-state TBA equations of the sine-Gordon
model differ from the ground state ones only by some source terms [24]. Finally, additional
support for our assumptions comes from a direct calculation in the higher spin vertex model,
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which reduce to the O(4) NLS model in the infinite spin limit. These calculations show that
excited-state NLIEs differ from the ground state ones again only by some source terms, which
depend on the volume only through some complex objects, on which quantization conditions
have to be imposed. (As an additional example see [28] for the S = 1 special case.) However,
we cannot directly derive the one-particle NLIEs of the O(4) NLS model from the (limit of
the) higher spin vertex model, since the solvable lattice model is describing only a subsector
of the Hilbert space of the model [20, 21] and unfortunately the one-particle states are not in
this subsector.

Accepting these assumptions our task is to find the necessary source terms of the excited-
state NLIEs. This is achieved similarly to the case of the derivation of the excited-state TBA
equations of the model, where the infinite volume solutions of the equations allowed one to
deduce the TBA integral equations [24]. The unknown functions of the excited-state problem
will be denoted in the same way as in equations (6). Assuming that relation (9) holds also for
the first excited states, we can use this relation in the equation for the massive mode in (1).
This leads to the following ansatz for the first excited-state NLIE problem:

log y1(x) = D(x) + log τ 2(x) + 2(K+γ ∗ log U)(x) + 2(K−γ ∗ log Ū )(x),

log a(x) = Fa(x) + (F ∗ log U)(x) − (F +2(1−γ ) ∗ log Ū )(x) + (K−γ ∗ log Y1)(x),

log ā(x) = Fā(x) + (F ∗ log Ū )(x) − (F−2(1−γ ) ∗ log U)(x) + (K+γ ∗ log Y1)(x),

U(x) = 1 + a(x), Ū(x) = 1 + ā(x), Y1(x) = 1 + y1(x),

(25)

where 0 < γ < 1/2 is an arbitrary fixed parameter, the energy formula identical to (21) and
our task is to determine the presently unknown Fa(x) and Fā(x) source functions. Using the
assumption that these functions do not depend on the volume directly, one can determine them
from the infinite volume solution of the proposed equations, which can be determined from
the solution of the infinite volume t-system (12) and Y-system (18). Using the construction of
[17, 25], the infinite volume solutions of the ansatz (25) take the form

a∞(x) = λ
(2)
1 (x + i − iγ )

λ
(2)
2 (x + i − iγ )

= t1(x − iγ )

B[x + i(2 − γ )]
= x − iγ

x + i(2 − γ )
, (26)

ā∞(x) = λ
(2)
2 (x − i + iγ )

λ
(2)
1 (x − i + iγ )

= t1(x + iγ )

B[x − i(2 − γ )]
= x + iγ

x − i(2 − γ )
, (27)

U∞(x) = 1 + a∞(x) = 2
x + i(1 − γ )

x + i(2 − γ )
, (28)

Ū∞(x) = 1 + ā∞(x) = 2
x − i(1 − γ )

x − i(2 − γ )
, (29)

and y∞
1 (x) = 0. One can check that a(x) is the complex conjugate of ā(x) and that these

solutions satisfy the relation U∞(x + iγ )Ū∞(x − iγ ) = Y∞
2 (x), which is the infinite volume

limit of (9). Once one knows the infinite volume solutions of the ansatz (25), one can substitute
these formulae into them and can compute explicitly the unknown source functions. The most
convenient way to do this is to take the derivative of equations (25) and work in Fourier
space, and in the end return to the coordinate space and integrate once. After these simple
calculations one gets

Fa(x) = χ(x + i(1 − γ )) + χK(x + i(1 − γ )), (30)

Fā(x) = −χ(x − i(1 − γ )) − χK(x − i(1 − γ )), (31)
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where

χ(x) = 2π i
∫ x

0
dy F(y) = i

∫ ∞

−∞

dq

q
sin(qx)

e−|q|

2 cosh(q)
, (32)

χK(x) = 2π i
∫ x

0
dy K(y) = i arctan sinh

(πx

2

)
. (33)

Note that these functions are nothing but the odd primitives of the kernel functions of the
integral terms of the ground-state equations (6), which is similar to what happens for the NLIE
of the sine-Gordon model in the case of the one hole excitation [11].

We solved these NLIEs numerically for a number of cases and the results we found
always agreed with those obtained from the numerical solution of the TBA equations (19)
(see section 6). This means that the two methods are equivalent. On the other hand, the TBA
equations were tested previously by using Lüscher’s formula, Monte Carlo measurements [2]
and 3-loop perturbation theory [26]. Thus, we are confident that equations (25) with source
terms (30), (31) correctly describe the one-particle excited states of the O(4) NLS model.
They are superior to the TBA equations since they contain only three real unknown functions
leading to faster convergence in numerical calculations.

5. Excited-state nonlinear integral equations for the O(3) NLS model

In this section, following the method described in the previous section, we propose NLIEs for
the first excited state of the O(3) NLS model. According to our assumptions the ansatz for
the NLIEs is of the form

log y1(x) = D(x) + log y2(x),

log y2(x) = log τ(x − h3) + log τ(x + h3) + (K+γ ∗ log U)(x) + (K−γ ∗ log Ū )(x),

log a(x) = Fa(x) + (F ∗ log U)(x) − (F +2(1−γ ) ∗ log Ū )(x)

+ (K−γ ∗ log Y1)(x) + (K−γ ∗ log Y2)(x),

log ā(x) = Fā(x) + (F ∗ log Ū )(x) − (F−2(1−γ ) ∗ log U)(x)

+ (K+γ ∗ log Y1)(x) + (K+γ ∗ log Y2)(x),

U(x) = 1 + a(x), Ū(x) = 1 + ā(x), Ya(x) = 1 + ya(x), a = 1, 2

(34)

where 0 < γ < 1/2 is an arbitrary fixed parameter, y1(x) and y2(x) are the same variables as
those in the excited-state TBA equations (22) and h3 is the zero of the y3(x) Y-system element
of the excited-state problem (i.e. y3(±h3 ± i) = −1), therefore an additional quantization
equation must be imposed on this zero. This quantization condition can also be derived from
the infinite volume solution of our equations and will be discussed at the end of this section.
The energy expression in turn is the same as the TBA one (21).

According to our method, first we have to determine the infinite volume solution of our
ansatz (34). This can be achieved using the solutions of the infinite volume t-system (12)–(16),
and applying the construction of [17, 25]. After some straightforward calculations one gets

a∞(x) = λ
(3)
1 (x + i − iγ ) + λ

(3)
2 (x + i − iγ )

λ
(3)
3 (x + i − iγ )

= 2
(x − iγ )2

(x + i(4 − γ ))(x + i(2 − γ ))
, (35)

ā∞(x) = λ
(3)
2 (x − i + iγ ) + λ

(3)
3 (x − i + iγ )

λ
(3)
1 (x − i + iγ )

= 2
(x + iγ )2

(x − i(4 − γ ))(x − i(2 − γ ))
, (36)
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U∞(x) = 1 + a∞(x) = 3
(x + h0 + i(1 − γ ))(x − h0 + i(1 − γ ))

(x + i(4 − γ ))(x + i(2 − γ ))
, (37)

Ū∞(x) = 1 + ā∞(x) = 3
(x + h0 − i(1 − γ ))(x − h0 − i(1 − γ ))

(x − i(4 − γ ))(x − i(2 − γ ))
, (38)

y∞
2 (x) = t1(x)t3(x)

B(x + 2i)B(x − 2i)
= 3

(x + h0)(x − h0)

(x + 3i)(x − 3i)
, (39)

Y∞
2 (x) = 1 + y∞

2 (x) = t2(x + i)t2(x − i)

B(x + 2i)B(x − 2i)
= 3

(x + i)(x − i)

(x + 3i)(x − 3i)
, (40)

where h0 = liml→∞ h3 = √
5/3, the infinite volume limit of the zero h3, and certainly

y1(x) = 0 in the infinite volume limit. The infinite volume solutions (35)–(40) also satisfy
the important relation U∞(x + iγ )U∞(x − iγ ) = Y∞

3 (x), which allows one to cut the infinite
TBA equations.

Having the infinite volume solutions of our ansatz, using the method detailed in the
previous section one can calculate the unknown source terms (at least their infinite volume
limit). After simple calculations one gets

Fa(x) = χ(x + h0 + i(1 − γ )) + χ(x − h0 + i(1 − γ )) + 2χK(x + i(1 − γ )), (41)

Fā(x) = −χ(x + h0 − i(1 − γ )) − χ(x − h0 − i(1 − γ )) − 2χK(x − i(1 − γ )). (42)

According to our assumption these source terms may depend on the volume through the
objects, which can be found in their arguments, namely through the volume dependence of
h0. Therefore, we replace h0 by its finite volume value h3 in (41), (42), and according to our
conjecture that will be the form of the source functions for finite volume,

Fa(x) = χ(x + h3 + i(1 − γ )) + χ(x − h3 + i(1 − γ )) + 2χK(x + i(1 − γ )), (43)

Fā(x) = −χ(x + h3 − i(1 − γ )) − χ(x − h3 − i(1 − γ )) − 2χK(x − i(1 − γ )). (44)

Equations (34) must be supplemented by the quantization condition of the zero h3, similarly to
the TBA case. The quantization condition can be found from the infinite volume solutions (35)–
(40). One can see from these solutions that U∞(±h0 − i(1 − γ )) = 0. Assuming that this
relation remains valid also for finite volume, one can infer that U(±h3 − i(1 − γ )) = 0, from
which follows that

a(h3 − i(1 − γ )) = −1. (45)

Taking the logarithm of this, and using equations (34) with (43), (44), one gets the quantization
condition for h3

A(h3) = π, (46)

where

A(x) = 1

i
χ(x − h3) +

1

i
χ(x + h3) +

2

i
χK(x) +

1

i
(K−1 ∗ log Y1)(x)

+
1

i
(K−1 ∗ log Y2)(x) +

1

i
(F−(1−γ ) ∗ log U)(x) − 1

i
(F +(1−γ ) ∗ log Ū )(x). (47)

To summarize equations (34) with the source functions (43), (44), and supplemented by the
quantization, conditions (46), (47) make up the one-particle NLIEs of the O(3) NLS model.
In these equations, one can also see that the source functions are nothing but the odd primitives
of the kernel functions, as in the O(4) case. Nevertheless in this case the situation is a bit more
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Table 1. NLIE and TBA results for the ground-state energy in the O(4) NLS model.

ml E0 (NLIE) E0 (TBA)

2 −0.162 028 9681(1) −0.162 028 97(1)
1 −0.643 774 5719(1) −0.643 7746(1)
10−1 −11.273 364 587(1) −11.273 364(1)
10−2 −127.226 343 73(1) −127.2263(1)
10−3 −1343.409 0793(1) −1343.409(1)
10−4 −13 865.238 816(1)
10−5 −141 563.8217(1)
10−6 −1436 683.423(1)

complicated, because they contain some zeros in their argument, namely the function χ(x)

contains the zero h3, which corresponds to the zero of the y3(x) (in the y3(±h3 ± i) = −1
sense), and the function χK(x) contains the zero h2 = 0, which corresponds to the zero of
the y2(x) (in the y2(±h2 ± i) = −1 sense), but for this object we do not need to impose a
quantization equation for symmetry reasons.

Following from the construction of these equations, one can analytically verify by solving
these equations iteratively for large l that they give back correctly the same leading order
correction to the infinite volume mass gap as is predicted by Lüscher’s formula [23]. For
not very large volumes we tested these NLIEs through numerical calculations, and we found
that these equations give the same numerical results as the earlier proposed excited-state TBA
equations (22)–(24) (see section 6). Because the corresponding TBA system was tested by
the results of 3-loop order perturbation theory [26] and lattice Monte Carlo measurements
[2], thus our new excited-state NLIEs are also consistent with these methods, and correctly
describe the first excited-state energy of the O(3) NLS model.

6. Numerical results

In this section, we perform numerical checks on our conjectured one-particle NLIEs. We
solved numerically both the TBA equations and the NLIEs for the ground state and for the
one-particle states at some values of the volume, and we compared the numerical results of
the two different methods. Moreover, we solved our conjectured NLIEs in the deep ultraviolet
region so as to be able to compare our numerical results to the predictions of the asymptotically
free perturbation theory.

The numerical method used for solving the TBA equations is described in [3]. The
numerical solution of the corresponding NLIEs is rather similar. Namely, we solve the NLIEs
numerically by iteration. The starting point for the iteration is the l → ∞ solution of the
equations and the procedure converges rapidly. The one-particle state problem for the O(3)

NLS model is more involved since here one step of the iteration includes the calculation of the
integrals occurring in (34) together with the calculation of the zero (h3) from the quantization
condition (46), (47). Again, the starting point of the iteration procedure is given by the l → ∞
solution, both for the unknown functions and for the position of the zero h3.

We used Simpson’s formula, and a cut-off 	 for the numerical evaluation of the integrals
running from −∞ to +∞, in such a way that in the region of |x| > 	 the unknown functions
are approximated by their infinite volume limit. The magnitude of the cut-off 	 at the values
of the volume under consideration has to be 100 in the O(4) case and 150 in the O(3) case,
so that 9-digit numerical precision could be reached. Our numerical results are summarized
in tables 1–4.
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Table 2. NLIE and TBA results for the ground-state energy in the O(3) NLS model.

ml E0 (NLIE) E0 (TBA)

2 −0.122 846 6915(1) −0.122 8466(1)
1 −0.486 249 5672(1) −0.486 2496(1)
10−1 −8.006 985 662(1) −8.006 985(1)
10−2 −87.635 700 19(1) −87.6357(1)
10−3 −913.954 7387(1) −913.954(1)
10−4 −9374.188 294(1)

Table 3. NLIE and TBA results for the one-particle state energy in the O(4) NLS model.

ml E1 (NLIE) E1 (TBA)

2 0.992 334 0593(1) 0.992 334 06(1)
1 0.938 397 0591(1) 0.938 397 06(1)
10−1 −3.004 108 884(1) −3.004 1089(1)
10−2 −69.838 027 86(1) −69.838 028(1)
10−3 −901.281 5867(1) −901.281 59(1)
10−4 −10 260.214 298(1)
10−5 −111 091.0324(1)
10−6 −1172 575.496(1)

Table 4. NLIE and TBA results for the one-particle state energy in the O(3) NLS model.

ml E1 (NLIE) E1 (TBA)

2 1.021 697 21(1) 1.021 6972(1)
1 1.084 208 673(1) 1.084 208(1)
10−1 0.777 210 84(1) 0.777 18(1)
10−2 −23.640 7101(1) −23.643(1)
10−3 −406.195 912(1) −406.23(1)
10−4 −5150.216 19(1)

One can see from these numerical data that the numerical results served by our NLIEs
agree with those of the TBA equations within the numerical precision.

Now we are able to compare our numerical results to those of the asymptotically free
perturbation theory. Having the numerical values of the ground-state energies and the one-
particle state energies, we can compute the dimensionless finite volume mass gap numerically
(LWW coupling)

z(ml) = l[E1(l) − E0(l)], (48)

for which perturbative results are also available up to 3-loop order [26]. The perturbative
formulae necessary to compute the 3-loop perturbative mass gap can be found in [3]. The
comparison of our numerical results to the predictions of the perturbation theory can be found
in tables 5 and 6. We listed both the 2-loop and 3-loop perturbative results so that one can infer
the accuracy of the 3-loop perturbation theory at the scales under investigation. From this
comparison, at very small ml values one can experience a very nice 4-digit agreement in the
O(3) case, and an almost 6-digit agreement in the O(4) case, which is non-trivial, since the
conjecture of our NLIEs was based on the large volume asymptotics of the unknown functions.
This perfect agreement makes us confident that our conjectured one-particle NLIEs describe
the exact finite volume one-particle energies in the O(3) and O(4) NLS models.
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Table 5. NLIE and PT results for the finite volume mass gap z(ml) in the O(4) NLS model.

ml z(l) (NLIE) 3-loop PT 2-loop PT

10−1 0.826 925 570(1) 0.826 130 0.825 2260
10−2 0.573 883 159(1) 0.573 7662 0.573 5488
10−3 0.442 127 493(1) 0.442 0969 0.442 0193
10−4 0.360 502 452(1) 0.360 4916 0.360 4571
10−5 0.304 727 89(1) 0.304 7233 0.304 7056
10−6 0.264 107 93(1) 0.264 1057 0.264 0957

Table 6. NLIE and PT results for the finite volume mass gap z(ml) in the O(3) NLS model.

ml z(l) (NLIE) 3-loop PT 2-loop PT

10−1 0.878 419 650(1) 0.876 058 0.873 458
10−2 0.639 949 901(1) 0.639 645 0.638 874
10−3 0.507 758 827(1) 0.507 669 0.507 358
10−4 0.422 397 210(1) 0.422 363 0.422 212

7. Summary and conclusions

In this paper, we proposed NLIEs for the one-particle states in the O(3) and O(4) NLS models.
The forms of these excited-state NLIEs are based on the assumption that they differ from the
ground state ones only by some source terms, which may depend on the volume through some
objects in their argument, on which extra quantization conditions must be imposed. This
assumption is mainly motivated by the form of the NLIEs in the sine-Gordon model and by
direct calculations in the higher spin vertex model (which go to the O(4) NLS model in the
infinite spin limit). Accepting these assumptions and starting from the explicit infinite volume
solution of the first excited-state Y-system of the models we were able to find the infinite
volume limit of the conjectured equations. This is sufficient to determine the source terms
and the quantization conditions. It is interesting to note that in all cases the source terms are
the odd primitives of the kernels occurring in the integral terms of the equations, just as in
the case of the NLIE in the sine-Gordon model. We have solved these equations numerically
and found that results agree with those obtained previously from numerical solution of the
excited-state TBA equations and in the deep ultraviolet regime the numerical results also agree
with the predictions of the 3-loop perturbation theory. This agreement is convincing evidence
for the correctness of our integral equations. The advantage of using these NLIEs (instead of
the infinite set of TBA equations) is that here the number of unknown functions is finite (and
small).

An interesting generalization of our results would be to propose excited-state NLIEs for the
φ(id,id,adj) perturbation of the SU(2)L × SU(2)K/SU(2)L+K models, which were investigated
at rational level K in [16].

It would also be interesting to extend the NLIE technique for all the excited states of
the O(3) and O(4) NLS models and for such more complicated TBA systems which can be
encoded into the products of two Dynkin diagrams [27].
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